Controlling the False Discovery Rate (FDR) in a variable selection procedure is critical for reproducible discoveries, which receives an extensive study in sparse linear models. However, in many scenarios, the sparsity constraint is not directly imposed on the parameters, but on a linear transformation of the parameters to be estimated. Examples can be found in total variations, wavelet transforms, fused LASSO, and trend filtering, etc. In this paper, we proposed a data adaptive FDR control in this structural sparsity setting, the Split Knockoff method. The proposed scheme relaxes the linear subspace constraint to its neighborhood, often known as variable splitting in optimization, that enjoys new statistical benefits. It yields orthogonal designs and split knockoff matrices, that exhibit desired FDR control empirically in structural sparsity discovery and improve the power of strong feature selection by enhancing the incoherence condition for model selection consistency. Yet, the split knockoff statistics fail to satisfy the exchangeability, a crucial property in the classical knockoff method for provable FDR control. To address this challenge, we introduce an almost supermartingale construction under a perturbation of exchangeability, that enables us to establish FDR control up to an arbitrarily small inflation that vanishes as the relaxed neighborhood enlarges.

5 May 2021
9am - 10am
Where
https://hkust.zoom.us/j/95777425661 (Passcode: 123456)
Speakers/Performers
Mr. Yang CAO
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 May 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Confinement Controlled Electrochemistry: Nanopore beyond Sequencing
Abstract Nanopore electrochemistry refers to the promising measurement science based on elaborate pore structures, which offers a well-defined geometric confined space to adopt and characterize sin...
13 May 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture – Expanding the Borders of Chemical Reactivity
Abstract The lecture will demonstrate how it has been possible to expand the borders of cycloadditions beyond the “classical types of cycloadditions” applying organocatalytic activation principles....