Early detection of COVID-19 is critical in mitigating the spread of the virus. Commonly used tests include nucleic acid detection, antibodies detection via blood testing and CT imaging. Some tests are accurate but time-consuming, while others are cheaper but less accurate. Exactly which test to use is constrained by various considerations, such as availability, cost, accuracy and efficiency.



 



In this paper, we propose a Flexible, Efficient and Accurate Test (FEAT). FEAT is based on group testing with simple but careful design by incorporating ideas such as close contact cliques and repeated tests. FEAT could dramatically improve the efficiency and/or accuracy of any existing test. For example, for an accurate but slow test such as RT-PCR, FEAT can improve efficiency by multiple times without compromising accuracy. On the other hand, for fast but inaccurate tests, FEAT can sharply lower the false negative rates (FNR) and greatly increase efficiency. Theoretical justifications are provided. We point out some scenarios where the FEAT can be effectively employed.

8 May 2021
10:00am - 11:00am
Where
https://hkust.zoom.us/j/5130899966 (Passcode: hkust)
Speakers/Performers
Miss Qing YANG
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
15 May 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...