Recurrent neural networks like long short-term memory (LSTM) have been utilized as a tool for modeling and predicting dynamics of complex stochastic molecular systems. Previous studies have shown that Transformer has an advantage over LSTM in dealing with the memory loss of long-sequence data, and exceeds LSTM in many natural language processing tasks. In this seminar, we will show the implementation of Transformer on learning molecular dynamics and compare it with LSTM, which is greatly affected by lag time.
3 May 2021
3:00pm - 4:00pm
Where
https://hkust.zoom.com.cn/j/6218914432 (Passcode: hkust)
Speakers/Performers
Miss Wenqi ZENG
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract
Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract
After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...