With the two-stage fourth-order temporal evolution of the gas distribution function and Weighted Essentially Non-Oscillatory (WENO) reconstruction, a high-order finite difference gas-kinetic scheme is proposed. Different from the previous high-order finite volume gas-kinetic methods, which uses the discontinuous initial reconstruction at the cell interface, the present scheme is the conservative finite difference method with a continuous flow distribution at the grid point. And the numerical fluxes are obtained by the kinetic splitting method, instead of the traditional flux splitting based on the approximate Riemann solver. Many numerical tests in solving one and two-dimensional Euler and Navier-Stokes equations demonstrate the current scheme is highly stable, accurate, and efficient, capturing discontinuities without oscillations.

3 May 2021
10:30am - 11:30am
Where
https://hkust.zoom.us/j/93466631320 (Passcode: hkust)
Speakers/Performers
Miss Qing XIE
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students
Language(s)
English
Other Events
15 May 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...