As a candidate of the B-model mirror of genus one Gromov-Witten invariants, the so-called Bershadsky-Cecotti-Ooguri-Vafa (BCOV) invariant is a real-valued invariant of Calabi-Yau manifolds defined using analytic methods. In a joint work with Yeping Zhang, based his earlier work, we showed that birationally isomorphic Calabi-Yau manifolds have the same BCOV invariant, confirming a conjecture of Fang, Lu and Yoshikawa. Furthermore, we extended the definition, as well as the birational invariance, of the BCOV invariants to all varieties with numerically trivial canonical class and Kawamata log terminal singularities. I will emphasis the interesting parallel between our argument and Kontsevich's proof of the birational invariance of Hodge numbers of Calabi-Yau manifolds using motivic integration.

18 Mar 2021
4:00pm - 5:15pm
Where
https://hkust.zoom.us/j/9584764665 (Passcode: 2022)
Speakers/Performers
Dr. Lie FU
Radboud University, Netherlands
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chem...
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...