Online Robust Matrix Factorization (ORMF) algorithms seek to learn a reduced number of latent features as well as outliers from streaming data sets. It is important to understand stability of online algorithms for dependent data streams since these are often generated by Markov chain Monte Carlo (MCMC) algorithms, but rigorous convergence analysis of most online algorithms were limited to independently obtained data samples. In this talk, we propose an algorithm for ORMF and prove its almost sure convergence to the set of critical points of the expected loss function, even when the data matrices are functions of some underlying Markov chain satisfying a mild mixing condition. We illustrate our results through dictionary learning and outlier detection problem for images and networks.
25 Mar 2020
4:00pm - 5:00pm
Where
https://hkust.zoom.com.cn/j/590198340
Speakers/Performers
Dr. Hanbaek Lyu
University of California at Los Angeles
University of California at Los Angeles
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.hk
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract
Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract
After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...