This talk will share our two recent results on low-tubal-rank tensor analysis. (1) LRTR: we establish a regularized tensor nuclear norm minimization (RTNNM) model for low-tubal-rank tensor recovery (LRTR). Then, we initiatively define a novel tensor restricted isometry property (t-RIP) based on tensor singular value decomposition (t-SVD). Besides, our theoretical results show that any third-order tensor X ∈ R n1 x n2 x n3 whose tubal rank is at most r can stably be recovered from its as few as measurements y = M (X) = w  with a bounded noise constraint via the RTNNM model, if the linear map M obeys t-RIP .(2) TRPCA: by incorporating prior information including the column and row space knowledge, we investigate the tensor robust principal component analysis (TRPCA) problem based on t-SVD. We establish sufficient conditions to ensure that under significantly weaker incoherence assumptions than tensor principal components pursuit method (TPCP), our proposed Modified-TPCP solution perfectly recovers the low-tubal-rank and the sparse components with high probability, provided that the available prior subspace information is accurate. In addition, we present an efficient algorithm by modifying the alternating direction method of multipliers (ADMM) to solve the Modified-TPCP program. Numerical experiments show that the Modified-TPCP based on prior subspace information does allow us to recover under weaker conditions than TPCP. The application of color video and face denoising task suggests the superiority of the proposed method over the existing state-of-the-art methods.
21 Jun 2019
10:30am - 11:30am
Where
Room 4504, Academic Building, (near Lifts 25-26)
Speakers/Performers
Prof. Jianjun WANG
College of Artificial Intelligence, Southwest University
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.hk
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...