In this seminar I will talk about a provably stable architecture for Neural Ordinary Differential Equations (ODEs) which achieves non-trivial adversarial robustness under white-box adversarial attacks even when the network is trained naturally. For most existing defense methods withstanding strong white-box attacks, to improve robustness of neural networks, they need to be trained adversarially, hence have to strike a trade-off between natural accuracy and adversarial robustness. Inspired by dynamical system theory, we design a stabilized neural ODE network named SONet whose ODE blocks are skew-symmetric and proved to be input-output stable. With natural training, SONet can achieve comparable robustness with the state-of-art adversarial defense methods. In particular, under PGD-20 ($ell_infty=0.031$) attack on CIFAR-10 dataset, our method of natural training achieves 89.36% natural accuracy and 61.62% robust accuracy, while a counterpart architecture of ResNet trained with TRADES achieves natural and robust accuracy 85.28% and 23.06% respectively, in the same setting.
14 May 2020
4:00pm - 5:00pm
Where
https://hkust.zoom.us/j/98027512081
Speakers/Performers
Mr. Yifei HUANG
HKUST
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.hk
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...