In this talk, I will introduce a new geometric inequality: the Sphere Covering Inequality. The inequality states that the total area of two distinct surfaces with Gaussian curvature less than 1, which are also conformal to the Euclidean unit disk with the same conformal factor on the boundary, must be at least 4π. In other words, the areas of these surfaces must cover the whole unit sphere after a proper rearrangement. We apply the Sphere Covering Inequality to show the best constant of a Moser-Trudinger type inequality conjectured by A. Chang and P. Yang. Other applications of this inequality include the classification of certain Onsager vortices on the sphere, the radially symmetry of solutions to Gaussian curvature equation on the plane, classification of solutions for mean field equations on flat tori and the standard sphere, etc. The resolution of several open problems in these areas will be presented.
23 Dec 2019
11:00am - 12:00pm
Where
Room 3472, Academic Building (Lifts 25-26)
Speakers/Performers
Prof. Changfeng Gui
University of Texas at San Antonio
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.hk
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...