We define a localised Euler class for isotropic sections, and isotropic cones, in SO(N) bundles. We use this to give an algebraic definition of Borisov-Joyce's sheaf counting invariants on Calabi-Yau 4-folds. When a torus acts, we prove a localisation result. This talk is based on the joint work with Richard. P. Thomas.

28 Oct 2020
3:15pm - 4:15pm
Where
https://hkust.zoom.us/j/9584764665 (Passcode: dt4fold)
Speakers/Performers
Dr. Jeongseok OH
Korea Institute for Advanced Study (KIAS)
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
14 Jul 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
15 May 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...