Controlling the False Discovery Rate (FDR) in a variable selection procedure is critical for reproducible discoveries, which receives an extensive study in sparse linear models. However, in many scenarios, the sparsity constraint is not directly imposed on the parameters, but on a linear transformation of the parameters to be estimated. Examples can be found in total variations, wavelet transforms, fused LASSO, and trend filtering, etc. In this paper, we proposed a data adaptive FDR control in this structural sparsity setting, the Split Knockoff method. The proposed scheme relaxes the linear subspace constraint to its neighborhood, often known as variable splitting in optimization, that enjoys new statistical benefits. It yields orthogonal designs and split knockoff matrices, that exhibit desired FDR control empirically in structural sparsity discovery and improve the power of strong feature selection by enhancing the incoherence condition for model selection consistency. Yet, the split knockoff statistics fail to satisfy the exchangeability, a crucial property in the classical knockoff method for provable FDR control. To address this challenge, we introduce an almost supermartingale construction under a perturbation of exchangeability, that enables us to establish FDR control up to an arbitrarily small inflation that vanishes as the relaxed neighborhood enlarges.

5 May 2021
9:00am - 10:00am
Where
https://hkust.zoom.us/j/95777425661 (Passcode: 123456)
Speakers/Performers
Mr. Yang CAO
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...