This talk covers several recent works that share a common theme of optimizing maps among a network of objects or domains. In this context, maps take the form of matrices or neural networks. A network of maps differs from standard networks and graphs in the sense that there are regularization constraints derived from map composition. Such constraints offer powerful tools for map denoising and to propagate and aggregate information through the network. We will discuss algebraic and combinatorial theories of these constraints and applications in geometry reconstruction,3D understanding, and scene synthesis. 

27 Sep 2021
10:30am - 11:30am
Where
https://hkust.zoom.us/j/5616960008 (Passcode: hkust)
Speakers/Performers
Prof. Qixing HUANG
Department of Computer Science, The University of Texas at Austin
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...