The Faber-Krahn inequality states that the first Dirichlet eigenvalue of the Laplacian on a domain is greater than or equal to that of a ball of the same volume (and if equality holds, then the domain is a translate of a ball). Similar inequalities are available on other manifolds where balls minimize perimeter over sets of a given volume. I will present a new sharp stability theorem for such inequalities: if the eigenvalue of a set is close to a ball, then the first eigenfunction of that set must be close to the first eigenfunction of a ball, with the closeness quantified in an optimal way. I will also explain an application of this to the behavior of the Alt-Caffarelli-Friedman monotonicity formula, which has implications for free boundary problems with multiple phases. This is based on recent joint work with Mark Allen and Robin Neumayer.

29 Oct 2021
9:00am - 10:00am
Where
https://hkust.zoom.us/j/93734229393 (Passcode: 936334)
Speakers/Performers
Prof. Denis KRIVENTSOV
Rutgers University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
14 Jul 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Boron Clusters
Abstract The study of carbon clusters led to the discoveries of fullerenes, carbon nanotubes, and graphene. Are there other elements that can form similar nanostructures? To answer this questio...
15 May 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Laser Spectroscopy of Computable Atoms and Molecules with Unprecedented Accuracy
Abstract Precision spectroscopy of the hydrogen atom, a fundamental two-body system, has been instrumental in shaping quantum mechanics. Today, advances in theory and experiment allow us to ext...