In this talk, we discuss the Dirichlet eigenvalue problem associated to the infinity Laplacian in metric spaces. We provide a direct PDE approach to find the principal eigenvalue and eigenfunctions for a bounded domain in a proper geodesic space with no measure structure. We give an appropriate notion of solutions to the infinity eigenvalue problem and show the existence of solutions by adapting Perron's method. Our method is different from the standard limit process, introduced by Juutinen-Lindqvist-Manfredi (ARMA,1999), via the variational eigenvalue formulation for $p$-Laplacian in the Euclidean space. Several further results and concrete examples will be given in the case of finite metric graphs. This talk is based on joint work with Ayato Mitsuishi at Fukuoka University.

12 Nov 2021
9:00am - 10:00am
Where
https://hkust.zoom.us/j/98685800264 (Passcode: 440023)
Speakers/Performers
Prof. Qing LIU
Fukuoka University, Japan
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
20 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - A Journey to Defect Science and Engineering
Abstract A defect in a material is one of the most important concerns when it comes to modifying and tuning the properties and phenomena of materials. The speaker will review his study of defec...
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...