Representation theory of infinite-dimensional algebras motivates the present development of quaternionic analysis. We recall the Fueter quaternionic analogue of the Cauchy integral formula and consider its generalizations. Our study extensively uses representation theory of the conformal group of quaternions. In particular, intertwining operators for tensor products of certain representations of the conformal group allow us to define quaternionic algebras of functions. Quaternionic dilogarithm, box Feynman diagram, and other relations to four-dimensional conformal field theory in physics appear naturally in our development of quaternionic analysis.

22 Mar 2023
4:30pm - 5:30pm
Where
Room 4621 (Lifts 31/32)
Speakers/Performers
Prof. Igor Frenkel
Yale University
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chem...
5 Dec 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Human B Cell Receptor-Epitope Selection for Pan-Sarbecovirus Neutralization
Abstract The induction of broadly neutralizing antibodies (bnAbs) against viruses requires the specific activation of human B cell receptors (BCRs) by viral epitopes. Following BCR activation, ...