Functional-coefficient models with a periodic component are proposed for short-term streamflow forecasting. Traditionally, analyses are conducted for anomaly data after removing an annual pattern or detrending the data after data differencing. Alternatively, periodic models establish separate models for individual seasons. However, the setting of periodic models cannot guarantee the smoothness in model coefficients which is necessary when the time scale is small (for example, daily). In this talk, we propose the use of functional-coefficient models with a periodic component, which extend the periodic regression for short-term forecasting. Unlike the traditional functional-coefficient models which extend the threshold regression model, our functional-coefficient model with a periodic component enjoys an invariance property under data differencing. As case studies, the models are applied to Australian streamflows. The proposed idea can be applied to statistical trend analysis which considers data dependence, and to regression for canopy temperature prediction using ambient variables.

17 May 2023
3:00pm - 4:00pm
Where
Room 1409 (Lifts 25/26)
Speakers/Performers
Prof. Quanxi SHAO
CSIRO data61, Australian Resources Research Centre
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...