An international research team led by scientists from the Hong Kong University of Science and Technology (HKUST) has developed a novel strategy using brain-wide genome-editing technology that can reduce Alzheimer’s disease (AD) pathologies in genetically modified AD mouse models. This advanced technology offers immense potential to be translated as a novel long-acting therapeutic treatment for AD patients. 

In China alone, over 500,000 patients are estimated to be living with a hereditary form of AD - familial Alzheimer’s disease (FAD), which is a congenital form of AD highly associated with family history. Although FAD has a clear genetic cause and can be diagnosed before cognitive problems occur, no effective treatment currently exists. Read More... 

 

HKUST’s Vice-President for Research and Development, Prof. Nancy Ip (second right) and her research team members – including doctoral student and co-first author of this research paper, Ms. Stephanie DUAN Yangyang (first right) – used the confocal imaging system (pictured) to demonstrate how disruption of a familial Alzheimer’s disease mutation by genome editing strategy reduces disease pathology. 

HKUST’s Vice-President for Research and Development, Prof. Nancy Ip (second right) and her research team members – including doctoral student and co-first author of this research paper, Ms. Stephanie DUAN Yangyang (first right) – used the confocal imaging system (pictured) to demonstrate how disruption of a familial Alzheimer’s disease mutation by genome editing strategy reduces disease pathology.
Scientific Breakthroughs & Discoveries