We consider the general $f$-divergence formulation of bidirectional generative modeling, which includes VAE and BiGAN as special cases. We present a new optimization method for this formulation, where the gradient is computed using an adversarially learned discriminator. In our framework, we show that different divergences induce similar algorithms in terms of gradient evaluation, except with different scaling. Therefore this paper gives a general recipe for a class of principled $f$-divergence based generative modeling methods. Theoretical justifications and extensive empirical studies are provided to demonstrate the advantage of our approach over existing methods.
15 May 2020
10:30am - 11:30am
Where
https://hkust.zoom.com.cn/j/96396217133
Speakers/Performers
Ms. Xinwei SHEN
HKUST
HKUST
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.hk
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract
Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract
After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...