Current neural networks can be easily attacked by small artificially chosen noise called adversarial examples. Although adversarial training and its variants currently constitute the most effective way to achieve robustness to adversarial attacks, their poor generalization limits their performance on the test samples. In this seminar, I will talk about a method to improve the generalization and robust accuracy of adversarially-trained networks via self-supervised test-time fine-tuning. To this end, I introduce a meta adversarial training method that incorporates the test-time fine-tuning procedure into the training phase, so as to strengthen the correlation between the self-supervised and classification tasks, which yields a good starting point for test-time fine-tuning. The extensive experiments on CIFAR10 and STL10 using different self-supervised tasks show that the method consistently improves the robust accuracy under different attack strategies for both the white-box and black-box attacks.

29 Apr 2021
9:30am - 10:30am
Where
https://hkust.zoom.us/j/93415784918 (Passcode: 343324)
Speakers/Performers
Mr. Zhichao HUANG
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
20 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - A Journey to Defect Science and Engineering
Abstract A defect in a material is one of the most important concerns when it comes to modifying and tuning the properties and phenomena of materials. The speaker will review his study of defec...
6 Jan 2026
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Innovations in Organo Rare-Earth and Titanium Chemistry: From Self-Healing Polymers to N2 Activation
Abstract In this lecture, the speaker will introduce their recent studies on the development of innovative organometallic complexes and catalysts aimed at realizing unprecedented chemical trans...