In this talk, we will examine a PDE aspect of the Yamabe flow as an energy-critical parabolic equation of the fast-diffusion type. It is well-known that under the validity of the positive mass theorem, the Yamabe flow on a smooth closed Riemannian manifold $M$ exists for all time $t$ and uniformly converges to a solution to the Yamabe problem on $M$ as $t \to \infty$. We will observe that such results no longer hold if some arbitrarily small and smooth perturbation is imposed on it, by constructing solutions to the perturbed flow that blow up at multiple points on $M$ in the infinite time. We also concern the stability of the blow-up phenomena under a negativity condition on the Ricci curvature at blow-up points. This is joint work with Monica Musso (University of Bath, UK).

17 Sep 2021
9:00am - 10:00am
Where
https://hkust.zoom.us/j/97445907096 (Passcode: 875622)
Speakers/Performers
Prof. Seunghyeok KIM
Hanyang University, South Korea
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...