As the advances in imaging modalities in which the image reconstruction problems are mathematically inverse problems, many new kinds of inverse problems have emerged and trends to being high dimensional but with low-cost data acquisition. In order to efficiently and stably solve the under-determined and ill-conditioned inverse problems in high-dimensional medical imaging and compressed sensing, we established accurate statistical models for data fitting and images priors such as shape priors, statistical priors by generative models. In this presentation, I will introduce some of these methods and our recent results for image reconstruction, such as 4DCBCT reconstruction, joint image reconstruction and indirect registration, phase retrieval and some other nonlinear inverse problems.

8 Dec 2022
9:00am - 10:00am
Where
https://hkust.zoom.us/j/91499516475 (Passcode: 436311)
Speakers/Performers
Prof. Jiulong LIU
Academy of Mathematics and Systems Science, Chinese Academy of Sciences
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...