Differentially private synthetic data provide a powerful mechanism to enable data analysis while protecting sensitive information about individuals. We first present a highly effective algorithmic approach for generating differentially private synthetic data in a bounded metric space with near-optimal utility guarantees under the Wasserstein distance. When the data lie in a high-dimensional space, the accuracy of the synthetic data suffers from the curse of dimensionality. We then propose an algorithm to generate low-dimensional private synthetic data efficiently from a high-dimensional dataset. A key step in our algorithm is a private principal component analysis (PCA) procedure with a near-optimal accuracy bound. Based on joint work with Yiyun He (UC Irvine), Roman Vershynin (UC Irvine), and Thomas Strohmer (UC Davis).

9 Aug 2023
10:00am - 11:00am
Where
Room 4504 (Lifts 25/26)
Speakers/Performers
Prof. Yizhe ZHU
University of California, Irvine
Organizer(S)
Department of Mathematics
Contact/Enquiries
Payment Details
Audience
Alumni, Faculty and staff, PG students, UG students
Language(s)
English
Other Events
24 Mar 2025
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Pushing the Limit of Nonlinear Vibrational Spectroscopy for Molecular Surfaces/Interfaces Studies
Abstract Surfaces and interfaces are ubiquitous in Nature. Sum-frequency generation vibrational spectroscopy (SFG-VS) is a powerful surface/interface selective and sub-monolayer sensitive spect...
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...