Research and Innovation |
HKUST Researchers Uncover Chemo-resistance Mechanism in Glioma Patients

An international research team co-led by the Hong Kong University of Science and Technology (HKUST), Beijing Neurosurgical Institute, and the Spanish National Cancer Research Center (CNIO) has discovered a mechanism that explains why patients of gliomas – a common and aggressive type of brain tumors, would develop chemo-resistance, potentially allowing early identification of drug-resistant brain cancer patients.

At present, the main treatment for glioma is a combination of surgery, radiotherapy and the chemotherapy agent temozolomide (TMZ).  This type of treatment can usually prolong patients’ overall survival time. However, most of them would suffer a relapse and some would become resistant to TMZ. 

Read more about relevant research:
HKUST Scientists Discover How RNA Polymerase II Maintains Highly Accurate Gene Transcription with High-Performance Computing


To understand why, the research team at the Wang Genomics Lab, led by Prof. WANG Jiguang, Assistant Professor at HKUST’s Division of Life Science and Department of Chemical and Biological Engineering, computationally analyzed a large cohort of the TMZ-treated recurrent tumors consisting of both publicly available cases and those collected by the team led by Prof. JIANG Tao from the Beijing Neurosurgical Institute, and found that there were translocations of chromosome 10 in some of these recurrent tumors. The team at CNIO validated the biological function of the genetic rearrangement using cancer cell lines and animal models.

The translocations significantly promoted the expression of a gene called MGMT, which repairs the main TMZ-induced DNA damage in cancer cells, causing treatment failure. The study has also found that such translocation only present in recurrent tumors, indicating that the resistance may occur as a consequence to the treatment itself.

“We hope the discovery of this mechanism would help develop a method for early detection of drug resistance and assist doctors in deciding whether the patient should continue be treated with TMZ,” said Prof. Wang.  “While it’s true that other drug options for gliomas are currently very limited, I hope this discovery could help develop a rapid test for chemo-resistance, so precious time could be saved for patients who may otherwise be undergoing ineffective treatment.”

Dr. Massimo SQUATRITO, who led the team at CNIO, added that the next step would be to identify novel treatment intervention for TMZ-resistant patients. 

The study was recently published in top scientific journal Nature Communications.


Find out more on other works of Prof. Wang’s:
HKUST Researchers Discover Mutation Route That Helps Find New Therapeutic Lead for Deadly Brain Cancer Patients

Teaching and Learning |
Jump-starting Your Research Career – The Stories of Two International Research Enrichment (IRE) Students

Achieving top scores of 5** in seven subjects in Hong Kong’s Diploma of Secondary Education (HKDSE) examination, Katherine LAI Man-Wai was unsurprisingly accepted by two international elite universities. But Katherine chose to study the International Research Enrichment (IRE) Program at HKUST. What led Katherine to opt for IRE Program to attain her goal of research career in science?

Another IRE student Dicky WONG Tak-Hin has been undertaking a research internship at the pioneering research university ETH Zurich since February. Dicky follows the world-renowned organic chemist Prof. Erick CARREIRA to conduct research into cancer drugs. What has driven him to devote to organic chemistry research? With already three years of experience in studying IRE Program and in leading-edge international research, how does Dicky think about scientific research? Read this article to learn more:


The IRE Program Director cum Associate Dean of Science, Prof. LEUNG Pak-Wo, was also interviewed. He precisely described the distinctive features of IRE Program, and also offered valuable and practical advice to students who want to explore science at tertiary education.


Watch Video

Let’s follow us on


Announcements |
Why choose School of Science at HKUST? – Message from Prof. Tim Leung to DSE students

Hi, DSE students, I am Prof. Tim Leung from HKUST. While you are waiting for the release of DSE results, I would like to let you know more about the School of Science and some features of our undergraduate education.

There are several ways you can learn about HKUST. The easiest way is definitely through the ranking. It would be more important to know the rankings of different SCIENCE disciplines. We have only four departments and one division within the School of Science. They are Chemistry, Life Science, Mathematics, Physics and a newly developed Department of Ocean Science. Clearly, we are not doing everything. But whatever we do, we want to be the best. Because we are small, we are able to concentrate our resources on these fields. Therefore, we are ranked very high not only in Hong Kong, but also in the world. I am highlighting several subjects in the slideshow. Many of our subjects are ranked number 1 in Hong Kong and almost all our departments and divisions are ranked in the top 50 in the world. In case you want to know more about our cutting-edge technology and about science, HKUST is definitely your TOP choice.

Another way to know more about HKUST School of Science is through our research. Let me quote some examples to illustrate our excellence in the fields of scientific research and recent development. We have Prof. TANG Benzhong in the Department of Chemistry, a distinguished scholar who won many prestigious prizes. In the Department of Physics, we have several very nice professors. One of them is Prof. WANG Yi. His research is on cosmology. We also have another professor in the Physics Department doing very excellent research in cosmology and astronomy. We have Prof. George SMOOT with us. He won the Nobel Prize in 2006. We actually have a full-time Nobel Prize winner teaching and doing research on our campus.

Although we do not have a medical school, we have professors from different departments doing researches in medicine. Our former Dean Prof. Nancy YIP is doing Alzheimer's disease research. She received a nationwide research lab at HKUST. Meanwhile, we developed different devices to test COVID-19. Don’t think it was developed by professors from the Life Science Division. In fact, that equipment was developed by a professor in the Physics Department. That’s an example showing that HKUST encourages interdisciplinary research. The university encourages different professors to talk to each other, so as to explore different research fields in order to make a bigger impact.

We know that some of you may worry about what you can do with a science degree after graduation. We have collected these career prospects from previous years. Around 25% of our graduates will continue with a graduate degree. Some might get a master or a PhD offer from overseas. A science degree can easily open the world to you. With a science degree, you can easily apply to many postgraduate degrees in the world. For those who want to concentrate on a career immediately, we see graduates in different types of companies and different types of disciplines. Of course, the education sector is still one major choice for our students, but you can obviously go into the business field, the IT sector and engineering. Do not limit your career path by the major that you are doing as an undergraduate.

If you think HKUST is the best university for you to pursue a science degree, please be reminded to put our undergraduate programs in JUPAS Band A choices - the JUPAS catalogue number for Science (Group A) Program is JS5102 and for Science (Group B) Program the number is JS5103.

Join HKUST, one of the top universities in Asia, where academicians gather, educators inspire, creative minds thrive and young leader's bloom. You will grow in this vibrant and exciting community and you will fly high when you leave. I hope to see you at our campus very soon.

Let’s follow us on


Announcements |
Why choose the Mathematics and Economics (MAEC) Program at HKUST?

The Mathematics and Economics (MAEC) Program is jointly offered by the School of Science and the School of Business and Management. The program is very unique, it combines both modern economic theories with mathematical skills. The broad-based curriculum will provide you with training in actuarial science, quantitative finance as well as risk management.

Graduates with an interdisciplinary degree are equipped with knowledge and skills of banking and finance professions and with a sufficient academic background for entry into advanced/professional degree programs in economics, financial mathematics, statistics, and other business-related fields. Recent graduates have been admitted into PhD/Master's programs at leading universities in the world.

If you are the JUPAS applicant and interested in joining us, please note that the JUPAS catalogue number for MAEC is JS5813. You may also consider getting into the Science (Group A) Program (JS5102) or any of the business program at HKUST first. After completing the first year of study, you may choose to major in MAEC via the major selection exercise. 

For details, please visit the website:

Let's follow us on 



Announcements |
Why choose Biotechnology and Business (BIBU) Program at HKUST?

The Biotechnology and Business (BIBU) Program is jointly offered by the School of Science and the School of Business and Management. It aims at nurturing students with a hybrid interest in both biotechnology applications and business operations. The program covers various domains in science and business, such as Recombinant DNA Technology, Aquaculture Biotechnology, Marketing, Operations Management, Biotechnology Management, Biotechnology Entrepreneurship and Business Operations, etc.

If you would like to apply for BIBU Program through JUPAS, please note that its JUPAS catalogue number is JS5811. To be qualified for admission, JUPAS applicants need to have studied either Biology or Chemistry. For students without HKDSE Biology or Chemistry, you can still consider getting admitted to our Science (Group B) Program (JS5103) or any Business School programs of HKUST. Upon completion of the first year of study, you can then opt for majoring in BIBU.

For details, please visit the website:

Let's follow us on 



Research and Innovation |
Researchers Uncover Novel Molecular Mechanism Shedding light on Drug Design for Cancer treatment

Researchers from the Hong Kong University of Science and Technology (HKUST) discovered a novel molecular mechanism that controls the delivery of a key protein in planar cell polarity (PCP) – an important process in our body that regulates cell growth and cell movement, providing useful guidance on the development of new drugs for cancer treatment.

PCP is a biological process critical for tissue development and organ function. Defects in PCP could lead to illnesses such as neurological disorder, skeletal abnormalities or congenital heart disease. Even worse, cancer cells can hijack PCP to promote their own growth and expansion.  

To offer new direction for more effective therapeutics, a team led by Prof. GUO Yusong, Assistant Professor of Division of Life Science in the School of Science at HKUST, unraveled how a key protein in PCP called Frizzled-6, was transported from within the cell to the cell surface where Frizzled-6 regulates PCP.  Understanding the molecular mechanism behind this transportation process meant scientists can now find a way to block transportation of Frizzled-6 and shut down the PCP process if it is hijacked by cancer cells, thereby hindering cancer progression.


Read more about relevant research:
HKUST Researchers Discover Mutation Route That Helps Find New Therapeutic Lead for Deadly Brain Cancer Patients

Similar to logistics and delivery services, newly produced PCP proteins - just like manufactured goods, need to be processed in plants called endoplasmic reticulum within the cell, where they are folded, modified and packaged. The packed protein would then be delivered through a COPII machinery which produces vehicles that send the protein to Golgi apparatus. The Golgi apparatus is a distribution center within the cell where proteins are packaged into specific transport vehicles, or vesicles, to be delivered to their specific destinations, in this case the cell surface, before proteins can start regulating the PCP process. 

In this research, Prof Guo found a special region in Frizzled-6 - namely a polybasic motif, which interacts with SAR1A - a key component of COPII.  Blocking the interaction between SAR1A and Frizzled-6 can bring the packaging and delivery to a halt, which in theory should be effective in hindering cancer metastasis.

“It has been known that PCP plays important role in regulating cancer’s growth, but the molecular mechanism that regulates the transport of PCP proteins was largely unclear,” Prof. Guo said.  “Our study provides important insight in guiding the rational design of inhibitors to inhibit the cell surface delivery process, and offers a novel therapeutic strategy to downregulate PCP signaling for cancer treatment.” 

The findings were recently published in scientific journal Journal of Biological Chemistry. This work was done in collaboration with Prof. JIANG Liwen at the School of Life Sciences of the Chinese University of Hong Kong and Prof. YAN Yan at the Division of Life Science of HKUST. 


Find out more on other works of Prof. Guo's:
HKUST Researchers Co-Discover a Novel Function of an Enzyme Offering Insight Into the Pathology of Hereditary Spastic Paraplegia

Research and Innovation |
An exclusive interview with CHEM Chair Prof. Benzhong TANG, who shared how “aggregation-induced emission” (AIE) can help infertile couples (Chinese version only)

To view the Chinese article of an exclusive interview with CHEM Chair Prof. Benzhong TANG, who shared how “aggregation-induced emission” (AIE) can help infertile couples, please click here.   

Research and Innovation |
HKUST Research Team Successfully Discovers New Material Generation Mechanism for Chip Design, Quantum Computing and Noise Reduction

The research team of the Hong Kong University of Science and Technology (HKUST) has recently made important progress in the field of new materials. Combining the characteristics of two-dimensional materials and topological materials, the team has for the first time discovered a universal generation mechanism of new materials with "type-II" Dirac cones. Many extraordinary properties of the material are realized in experiments, which addressed the key issue that the material could only be obtained sporadically under stringent limits. This mechanism can guide the preparation of new two-dimensional materials that have specific directional responses to external signals such as electric fields, magnetic fields, light waves, sound waves, etc., and will provide valuable applications for modern electronic communications, quantum computing, optical communications, and even sound insulation and noise reduction materials. 

HKUST-led Research Team Unveils Groundbreaking Quantum Simulation of 3D Topological Matter with Ultracold Atoms

As a typical representative of two-dimensional materials, since its discovery in 2004, graphene has been regarded as one of the greatest material discoveries in the 21st century. As the thinnest, strongest and most thermally conductive "super material" in the world today, graphene has been widely used in transistors, biosensors and batteries, and its discovery led to the 2010 Nobel Prize in Physics. On the other hand, topological materials, because of the existence of extraordinary properties such as zero-dissipative edge transport, are considered to be the cornerstones of the development of future electronic devices, and their discovery led to the 2016 Nobel Prize in Physics. In fact, graphene is also a topological material, and its extraordinary properties are mostly derived from its topological "Dirac cones". However, the "Dirac cones" in graphene belong to the "type-I" Dirac cones of the theoretical predictions. The more unique "type-II" Dirac cones in the theoretical predictions, because of their strongly directional responses to external signals that the type-I Dirac cones do not have, will bring many more possibilities to the development and applications of electronic devices. However, so far, the "Dirac cone of the second kind" can only be found sporadically in some materials, lacking a systematic generation mechanism.

To address this critical issue, the research team led by Prof. WEN Weijia and Dr. WU Xiaoxiao, from the Department of Physics, for the first time, discovered and successfully implemented the systematic generation mechanism of new two-dimensional materials with type-II Dirac cones based on the relevant theories of two-dimensional materials and topological materials, using the band-folding mechanism (a material-independent, universal principle for periodic lattices). Due to its unique topological bands, its response to external signals is extremely directional, so the two-dimensional materials with type-II Dirac cones have important academic and application values for the designs of high-precision detecting devices of external signals, such as electric fields, magnetic fields, light waves, and sound waves. The systematic design and material independence of this scheme also help to relax the precision requirements for circuit designs, making the design of corresponding electronic products easier and more flexible. The team used acoustic field scanning techniques to directly observe the type-II Dirac cone in acoustics, as well as many of its properties that were only proposed in theories previously.

The success of this experimental study has opened up a new field of researches and applications of two-dimensional materials and topological materials, and brought many more possibilities for the future applications of the new materials. The findings of this study have been published in the renowned journal Physical Review Letters.



The ventilated sound absorbers developed by Prof. Wen’s group based on acoustic metamaterials. The ventilated sound absorbers can simultaneously achieve high-performance sound absorption and air flow ventilation, which is important for noise reduction applications in the environment with free air flows, such as air conditioners, exhaust hoods, and ducts.

"Our findings of the deterministic scheme for type-II Dirac points could profoundly broaden application prospects on fronts such as 5G communications, optical computing such as quantum computing and noise reduction. Our team plans to apply the experimental results to electronic devices such as dedicated chips, new touch control materials, filter modules, wireless transmission and biosensors.” said Prof. Wen, “Also, type-II DPs observed in acoustic waves suggest viable new materials for sound barriers, providing potential solutions for high-efficiency soundproofing walls. While we improve the performance of acoustic metamaterials, we will seek to continuously expand their applications in aspects ranging from low-frequency sound absorption, noise reduction in ventilation systems, intelligent active noise cancelling, traffic noise abatement to architectural acoustics. We also hope that these materials can be truly industrialized.”

Long engaged in researching the field of advanced materials, Prof. Wen and his team have made a range of key achievements in the basic and applied research of new materials science. In 2014, he was awarded second-class 2014 State Natural Science Award (SNSA) for the project on "Structural and Physical Mechanism Investigation for Giant Electrorheological Fluid".

Announcements |
HKUST RedBird PhD Scholarship Program

HKUST RedBird PhD Scholarship Program Remains Open


At HKUST, we value every opportunity to enable talented students to pursue postgraduate studies. We understand that the recent pandemic and global situation may have interrupted your plan for pursuing a PhD program in the coming Fall. HKUST is launching the Fast-Track PhD Application Program such that your dream to join a top-rate research university remains possible under the unanticipated situation. In view that you may need more time to work on your application submission, we have extended our application deadline to 30 June 2020. Act now to submit your application onlineAll successful applicants will receive the same treatment as our regular PhD students. Excellent candidates will further be granted an additional renewable award of HK$40,000 a year in the name of RedBird PhD Scholarship in recognition of their outstanding academic performance and research capacity. 


Read more details... 

Announcements |
Global Webinar Series – HKUST x KAIST Joint Webinar “Research Efforts in Contributing to a Sustainable World”

HKUST has co-organized a series of multidisciplinary webinars under the theme “Navigating a World of Disruption”, with our global partners. School of Science has hosted a joint webinar, in partnership with the Korea Advanced Institute of Science and Technology (KAIST) on June 3, 2020. The webinar has shared our research efforts in tackling complex global challenges regarding public health, climate, water and energy.

View here for the webinar “Research Efforts in Contributing to a Sustainable World”


Opening Remarks:

Prof. Yang WANG
Dean of Science, HKUST


Prof. Sang Kyu KIM
Dean, College of Natural Sciences



Prof. Peiyuan QIAN
Head & Chair Professor, Department of Ocean Science


Prof. Jimmy FUNG
Head & Professor
Division of Environment & Sustainability;
Professor, Department of Mathematics


Prof. Hye Ryung BYON
Associate Professor, Department of Chemistry


Prof. Eui Cheol SHIN
Professor, Graduate School of Medical Science & Engineering


To view the full series of webinars, please visit here


Announcements |
Webinar Session on PG Studies in the School of Science on May 24, 2020 (conducted in Mandarin)

Date: 24 May 2020 


Time: 8:00pm



Prof. WANG Yang 
Dean of Science, HKUST


Prof. Angela WU
Assistant Professor, Division of Life Science and Department of Chemical and Biological Engineering, HKUST


Prof. WANG Yi
Associate Professor, Department of Physics, HKUST


Please refer to Page 1 and Page 2 of leaflet for registration method and event details. 


Research and Innovation |
HKUST Researchers Unlock Genomic Secrets of Scaly-foot Snail Laying Foundation for Potential Solutions Provided by Deep-Sea Creatures

Researchers from the Hong Kong University of Science and Technology (HKUST) have decoded for the first time the genome of Scaly-foot Snail, a rare snail inhabited in what scientists called ‘the origin of life’- deep-sea hydrothermal vents characterized with impossible living condition. Unraveling the genome of this unique creature will not only shed light on how life evolved billions of years ago, but will also lay foundation for the discovery of potential remedies offered by these ancient creatures. 

Despite an extreme environment characterized by high pressure, high temperature, strong acidity and low oxygen level which resembles living condition in pre-historic time, hydrothermal vents harbor a diverse amount of creatures - most of which have huge potential for biomedical and other applications. Among inhabitants of such difficult environment, the Scaly-foot Snail, also known as “Sea Pangolin”, is of particular interest to marine scientists. 

Scaly-foot Snail is the only extant gastropod (a major invertebrate animal, commonly known as snails and slugs,) alive that possesses armor-like scales – an otherwise very common feature for gastropod during the Cambrian time over 540 million years ago.  This snail is also the only organism in the world known to incorporate iron into its exoskeleton, and is also one of the top ten astounding marine species of the last decade (2007-2017).  Little is known, however, about its genome and unusual morphology, as the creature is extremely difficult to locate and collect.

Now, a research team led by Prof. QIAN Peiyuan, Chair Professor of HKUST’s Department of Ocean Science and Division of Life Science, managed to collect 20 scaly-foot snails at around 2,900 meters below sea level from the Indian Ocean in collaboration with researchers from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), and analyze the snail’s genome sequence.

HKUST Researchers Discover More Than 7,000 New Microbial Species Enhancing Our Understanding of Ocean Biodiversity

Contrary to many scientists’ expectation that the creature contains some new special genes that gives rise to its bizarre morphology, the team actually discovered that all of the snail’s genes already existed in other mollusks such as squid and pearl oyster, and the snail’s gene sequence has remained almost unchanged throughout its evolution. The 25 transcription factors (a key protein that regulates many downstream gene expression levels) which contribute to the snail’s scale and shell formation, as the team identified, have also contributed to the formation of many other unique hard-parts in Mollusca - such as operculum in gastropods, beak in squid, spicule in chiton, or chaetae in polychaetes. Watch Video 

“Although no new gene was identified, our research offers valuable insight to the biomineralization - a process where the clustering, positioning and on and off switching of a combination of genes which defines the morphology of a species,” said Prof. QIAN, also David von Hansemann Professor of Science.  “Uncovering Scaly-foot Snail’s genome advances our knowledge in the genetic mechanism of mollusks, laying the genetic groundwork which paves the way for application. One possible direction is how their iron-coated shells withstand heavy blows, which can provide us insights on ways to make a more protective armor.”

The findings were recently published in the scientific journal Nature Communications.

The study of genome sequencing often results in breakthroughs in biomedical and other sectors.  An enzyme of a microbe that lives in hydrothermal vents – for example, was recently used for the detection of COVID-19 as well as other viruses such as AIDS and SARS.

HKUST Researchers Unlock Cancer-Causing Mechanism of E. coli Toxin with Synthetic Biology Approach Paving Way for New Preventive Measures for Colorectal Cancer