Latent variable models lay the statistical foundation for data science problems with unstructured, incomplete and heterogeneous information. Spectral methods extract low-dimensional geometric structures for downstream tasks in a computationally efficient way. Despite their conceptual simplicity and wide applicability, theoretical understanding is lagging far behind and that hinders development of principled approaches. In this talk, I will first talk about the bias and variance of PCA, and apply the results to distributed estimation of principal eigenspaces. Then I will present an $ell_p$ theory of eigenvector analysis that yields optimal recovery guarantees for spectral methods in many challenging problems. The results find applications in dimensionality reduction, mixture models, network analysis, recommendation systems, ranking and beyond.
20 Mar 2020
9:30am - 10:30am
Where
https://hkust.zoom.com.cn/j/5616960008
Speakers/Performers
Dr. Kaizheng WANG
Princeton University
Princeton University
Organizer(S)
Department of Mathematics
Contact/Enquiries
mathseminar@ust.hk
Payment Details
Audience
Alumni, Faculty and Staff, PG Students, UG Students
Language(s)
English
Other Events
22 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Leveraging Protein Dynamics Memory with Machine Learning to Advance Drug Design: From Antibiotics to Targeted Protein Degradation
Abstract
Protein dynamics are fundamental to protein function and encode complex biomolecular mechanisms. Although Markov state models have made it possible to capture long-timescale protein co...
8 Nov 2024
Seminar, Lecture, Talk
IAS / School of Science Joint Lecture - Some Theorems in the Representation Theory of Classical Lie Groups
Abstract
After introducing some basic notions in the representation theory of classical Lie groups, the speaker will explain three results in this theory: the multiplicity one theorem for classical...