To discover and thoroughly demonstrate the newly identified noncanonical cleavage mechanism, the Hong Kong University of Science and Technology (HKUST) research team, led by Prof. Tuan Anh Nguyen, Assistant Professor of the Division of Life Science, used several sophisticated techniques, such as miRNA sequencing, pri-miRNA structure analysis, and high-throughput pri-miRNA cleavage assays for approximately 260,000 pri-miRNA sequences. In contrast to the canonical mechanism, the noncanonical mechanism does not rely on several essential protein and RNA elements required for the canonical mechanism. The study also revealed previously unrecognized DROSHA recognition sites (DRES), which are critical for noncanonical cleavage but can also function in the canonical cleavage mechanism. Furthermore, the study highlights the evolutionary aspect of this noncanonical cleavage mechanism, revealing that it is conserved across several animal species. This finding suggests that the noncanonical mechanism plays a significant role in the evolution of miRNA biogenesis and regulation. Read More...
More about HKUST